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Abstract

Population variability and uncertainty are important features of biological systems
that must be considered when developing mathematical models for these systems. In
this paper we present probability-based parameter estimation methods that account
for such variability and uncertainty. Theoretical results that establish well-posedness
and stability for these methods are discussed. A probabilistic parameter estimation
technique is then applied to a toxicokinetic model for trichloroethylene using several
types of simulated data. Comparison with results obtained using a standard, deter-
ministic parameter estimation method suggests that the probabilistic methods are
better able to capture population variability and uncertainty in model parameters.
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1 Introduction

Uncertainty is an inherent factor in mathematical models for biological sys-
tems. Model equations themselves are an approximation of the phenomena
they are designed to model, introducing a degree of uncertainty that is dif-
ficult to measure. Further simplifications and approximations of a model for
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theoretical and computational purposes result in additional layers of uncer-
tainty. Moreover, many biological processes are subject to variability that
may not be incorporated into a mathematical model. Experimental observa-
tions also introduce uncertainty when data are used with a model to estimate
parameters.

Two types of variability that are common in biological models and are well-
known in the statistical literature are intra-individual and inter-individual
variability. Intra-individual variability is defined as variability that occurs
within a given individual organism or biological process. This type of variabil-
ity may result in time-dependent and/or spatially-dependent variation within
an individual. Biological examples of such variability include parameters such
as body weight, blood pressure, fat content and cell membrane permeabilities.

A second type of variability that is commonly found in biological modeling is
inter-individual variability. This type of variability results from variations in
individuals across a population. Biological models that are based on behavior
or phenomena over a population are almost always subject to inter-individual
variability. This is especially the case when a model is designed to predict or
explain experimental observations that are collected from multiple individuals.

It is reasonable to expect that different individuals of a population would
possess different values for biological, physical and chemical parameters. These
parameters would then take on a range of values across the population, so that
each parameter would be associated with a probability distribution that would
mathematically describe this variation. Using data from multiple individuals,
the resulting probability distributions can be estimated with inverse problem
techniques.

Examples of biological parameters that are often subject to inter-individual
variability include growth and death rates, susceptibility to infection, efficacy
of vaccines and other prophylactics, and age. Note that each of the examples
given above for intra-individual variability may also involve inter-individual
variability depending on the type of model and experimental observations.
Similarly, each of the examples for inter-individual variability also may be
subject to intra-individual variability.

The motivating example we consider here is a toxicokinetic model for the
systemic transport of the environmental contaminant trichloroethylene (TCE).
TCE is a solvent that has been used widely in industry as a metal degreasing
agent, and is now a common soil and groundwater contaminant. This highly
fat-soluble compound is rapidly absorbed into the bloodstream, and has been
shown to accumulate in the adipose (fat) tissue of humans and animals [1,2].
Known and suspected toxic effects of TCE and its metabolites in laboratory
animals and/or humans include acute effects such as dizziness, drowsiness,
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headaches and fatigue, as well as chronic effects such as developmental defects
and lung, kidney and liver tumors [3–10].

Toxicokinetic models are used in the overall risk assessment process for toxic
compounds to help quantify the expected risk of toxicity to humans as a
function of the level of exposure to the given chemical. In particular, phys-
iologically based pharmacokinetic (PBPK) models predict the effective dose
level of a toxic compound that is delivered to the “target” tissues (i.e., tis-
sues that experience toxic effects) for a given external exposure level. PBPK
models are compartmental models that describe the systemic transport of
a compound through the tissues and organs, including the dynamics of up-
take, tissue distribution, metabolism and elimination. The resulting model is
a system of ordinary, partial and/or delay differential equations, with each
equation representing the dynamics of tissue concentrations in a particular
tissue or organ.

Several PBPK models have been developed for TCE (e.g., see [11–15]). A
majority of these models make use of the standard “perfusion-limited” com-
partmental model for each of the modeled tissues and organs (see Section 4
for a description of the perfusion-limited model). In [16] and [17], three PBPK
models for TCE are developed and compared, each with a different submodel
for the adipose tissue compartment.

As discussed in [16], preliminary simulations indicated that a perfusion-limited
adipose tissue compartment does not appear to sufficiently capture the dynam-
ics of TCE accumulation in fat as seen in experimental data. Moreover, adipose
tissue is known to have highly heterogeneous physiological properties, includ-
ing significant variations in fat cell size, lipid distribution, blood flow rates and
cell membrane permeabilities [18–21]. These characteristics further suggest
that the “well-mixed,” rapid equilibrium assumptions of the perfusion-limited
model may be inappropriate for describing the disposition of fat-accumulating
compounds such as TCE in adipose tissue.

To better capture the dynamics of TCE in fat tissue, a spatially varying axial
dispersion model was developed [16] to address the intra-individual variabil-
ity that results from the heterogeneous lipid distribution and physiological
characteristics of adipose tissue. This variability is built into the adipose com-
partmental model with a special axial dispersion term, where the “dispersion”
coefficient is a measure of the degree of intra-individual variability that occurs
in the fat.

In addition to the intra-individual variability that appears to affect TCE con-
centrations in fat tissue, inter-individual variability also plays a major role
in toxicokinetic models in general. Current technology almost always requires
that measurements of chemical concentrations in tissues over time must be
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taken from multiple individuals. This experimental necessity immediately in-
troduces inter-individual variability into the measured observations, and must
be considered in the development of mathematical models.

As biological models have become more widely utilized and influential in a
variety of fields, the need to account for variability and uncertainty in mod-
eling has been recognized. Markov Chain-Monte Carlo methods have been
developed to address issues of variability and uncertainty, and these methods
have been applied to PBPK models as a part of the parameter estimation pro-
cess. Monte Carlo methods are based on a Bayesian statistical approach that
involves the use of experimental data to update estimates of a hypothesized
“prior” probability distribution for one or more model parameters. Examples
of Monte Carlo methods applied to PBPK models can be found in [22–31].

An alternative, probability-based method has been developed to incorporate
uncertainty and variability in mathematical models. This method, which is
discussed in [32–34] and is detailed in Section 2, is centered around a proba-
bilistic parameter estimation approach that involves the estimation of proba-
bility distributions for model parameters. Well-known theoretical results from
probability theory establish the theoretical soundness of this technique, which
can be implemented computationally in a straightforward manner.

A distinct advantage of this approach over the Monte Carlo-based methods is
an added level of flexibility in choosing the prior probability distributions. As
we discuss in Section 2, these probability-based methods can be used with pre-
selected prior distributions as with Monte Carlo methods, or they may be used
with weighted sums of Dirac delta measures that do not assume a fixed form
for the probability distribution functions. A version of this method has been
applied to a population model for mosquitofish in rice paddies, and was used
to successfully describe fish population dynamics by estimating distributed
growth rate functions using aggregate experimental data [35].

In this paper we present probability-based parameter estimation methods for
incorporating uncertainty and variability into biological models. These meth-
ods are general and may be applied to a wide variety of models to account
for various types of model uncertainty as we have outlined here. In Section 2
we formulate these probabilistic parameter estimation methods in a general
setting. We address related theoretical issues in Section 3, establishing the
well-posedness of the resulting parameter estimation process. Finally, imple-
mentation of the methods in the context of a toxicokinetic model for TCE is
discussed in Section 4.
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2 General problem formulation

Suppose that a biological process is described by the parameter-dependent
system

dy

dt
= f(t, y(t), q), (1)

where y represents the state of system, q is the vector of parameters on which
the state depends, and f represents the dynamics of the system in the form
of ordinary, partial or functional differential equations. Experimental data
z = {zi}, i = 1, . . . , Nt are given that correspond to complete or partial
observations Oy(ti; q) of the state.

The model parameters q are estimated in a deterministic, least squares setting
by minimizing the objective function

J(q, z) =
Nt∑
i=1

|Oy(ti; q)− zi|2 (2)

over q ∈ Q subject to (1), where Q is the space of admissible parameters and
O is the observation operator.

In standard least squares estimation problems, the space Q is usually de-
fined as a compact subset of R

n for some positive integer n, so that q =
(q1, q2, . . . , qn) is a vector with real components. This assumption requires
each parameter to be a constant, which may not be reasonable for parameters
and experimental data that are subject to inter-individual variability. Indeed,
if experimental observations are collected from multiple individuals in a pop-
ulation, then one must think of the constant parameters q ∈ R

n as average
values over the sampled population. This approximation may be appropriate
for some parameters that do not vary to a large extent across individuals,
but in many cases these “mean” value approximations may lead to inaccurate
parameter estimates and an inaccurate description of the population. This is
especially true in situations when subpopulations are described by different
parameter values, or means, variances, etc.

Such population-dependent variability in model parameters can be incorpo-
rated into least squares estimation problems using a probability-based formu-
lation. We assume that the model parameters q are realizations of random
variables with probability distributions P that vary over the population, so
that P belongs to a probability space Q that may be infinite dimensional. As
in [33], we define the set P(Q) of all probability distributions on the admissible
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parameter spaceQ and seek a probability distribution function P̄ ∈ Q ⊆ P(Q)
that minimizes the objective function

J(P, ẑ) =
Nt∑
i=1

|E [Oy(ti; q)|P ]− ẑi|2 (3)

over Q ⊆ P(Q), where ẑi, i = 1, . . . , Nt are observations corresponding to the
expected value

E [Oy(ti; q)|P ∗] =
∫
Q

Oy(ti; q)dP
∗(q) (4)

for some P ∗ ∈ Q ⊆ P(Q). For simplicity we often choose Q = P(Q), but
this is not essential and one may readily restrict the family of admissible
distributions in certain formulations.

Depending on the choice of the set Q ⊆ P(Q) of probability distributions,
this method may be implemented with pre-determined “prior” probability
distributions (as with the Monte Carlo method), or it may be used without
the pre-specification of a particular probability distribution. For the case when
there is a reasonable expectation that a parameter varies across the population
in a manner similar to a given probability distribution, the setQ can be chosen
as the space of those distribution functions (e.g., log normal distributions)
defined over the admissible parameter space Q. For this type of formulation,
the distribution functions are uniquely determined by their parameterizations
q̃ (e.g., q̃ = (µ, σ), the mean and standard deviation), and hence may be
estimated by minimizing

J(q̃, ẑ) =
Nt∑
i=1

|E [Oy(ti; q)|P (q̃)]− ẑi|2 (5)

over the space Q̃ of admissible parameterizations q̃, where Q is given as the
set of probability distributions of the pre-specified form with the parameteri-
zations q̃.

For example, if it is believed that a parameter can be approximated by a
log normal distribution, then Q is given as the set of all log normal distribu-
tions defined over Q. For this particular formulation, the estimation problem
is solved by minimizing (5) over the space Q̃ of admissible mean and stan-
dard deviation parameters q̃ = (µ, σ). This approach has been implemented
in [36] where Q is defined as a set of bitruncated normal distributions with
certain specified properties, and the estimated parameters q̃ are the mean and
a modified standard deviation (see [36] for details).
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If it is not possible to predict the expected form of the probability distributions
a priori, this method also may be used without the specification of prior distri-
butions. In this case, Q = P(Q) may be chosen as the space of all probability
distributions defined on Q. For computational purposes, the estimation prob-
lem may then be implemented using finite dimensional approximations to the
original infinite dimensional problem. First we define the infinite dimensional
set

P0(Q) ≡ {P ∈ P(Q) : P =
k∑

j=1

pjδqj
, k ∈ N

+, qj ∈ Q0, pj ≥ 0,
k∑

j=1

pj = 1},(6)

where Q0 = {qj}∞j=1 is a given countable, dense subset of the parameter space
Q and δqj

is the Dirac delta distribution with mass at qj ∈ Q. In other words,
P0(Q) is the set of probability distributions on Q that have finite support in
Q0. We then define the finite dimensional set

PM = {P ∈ P0(Q) : P =
M∑
j=0

pjδqj
}

which we use to define a family of finite dimensional approximation problems.
That is, for fixed {q0, q2, . . . , qM} in Q0 with PM =

∑M
j=0 pjδqj

∈ PM , we
minimize the objective function

J(PM , ẑ)=
Nt∑
i=1

|E [Oy(ti; q)|PM ]− ẑi|2 (7)

=
Nt∑
i=1

∣∣∣∣∣∣
M∑
j=0

Oy(ti; qj)pj − ẑi

∣∣∣∣∣∣
2

(8)

over the set PM . These precise definitions are necessary to obtain a well-
posed estimation problem, as we discuss in Section 3. Note that the problem
of minimizing the objective function (8) corresponds to solving a constrained
quadratic programming problem for (p0, . . . , pM) with the constraints pj ≥ 0,∑M

j=0 pj = 1 (see Section 4.3). There currently exist a number of acceptable
computational methods to solve such problems which are again special cases
of choosing an a priori parameterization set (Q = PM in this case) and
optimizing over admissible parameterizations

Q̃ = {q̃ = (p0, . . . , pM) : pj ≥ 0,
M∑
j=0

pj = 1}.
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3 Theoretical results

In order to address theoretical issues related to the inverse problems discussed
in Section 2, we need to define a suitable metric for the probability spaces
P(Q). Using the Prohorov metric and well-known results from probability
theory, we establish a theoretical framework that allows us to prove method
stability for our probability-based parameter estimation problems.

3.1 The Prohorov metric

As in [37], the Prohorov metric is defined on the space of probability measures
P(Q) on the Borel subsets of Q, where Q is a complete metric space with
metric d. The Prohorov metric ρ : P(Q)× P(Q) → R

+ is defined by

ρ(P1, P2) = inf{ε > 0 : P1[F ] ≤ P2[F
ε] + ε; F closed; F ⊂ Q},

where
F ε = {q ∈ Q : d(q̄, q) < ε; q̄ ∈ F}.

It is well known that ρ is a metric on the space P(Q), and that this metric
space (P(Q), ρ) is complete. Moreover, (P(Q), ρ) is compact for all compact
sets Q.

Another well-known result [37] establishes equivalent conditions for conver-
gence of probability distributions in the Prohorov metric. Assuming that (Q, d)
is complete, then the following convergence statements for Pk, P ∈ P(Q) are
equivalent:

(i) ρ(Pk, P ) → 0.
(ii)

∫
Q f(q)dPk(q) → ∫

Q f(q)dP (q) for all bounded and uniformly continuous
functions f : Q → R.

(iii) Pk[A] → P [A] for all Borel sets A ⊂ Q with P [∂A] = 0, where ∂A is the
boundary of A.

3.2 Stability of the general parameter estimation problem

Banks and Bihari [33] have addressed theoretical issues related to probability-
based estimation problems. Using the Prohorov metric, they studied the con-
vergence properties of sequences of probability distributions in P(Q). These
results were then applied to a sequence of minimizers for finite dimensional
approximations to the estimation problem for (3). Here we summarize their
findings as they relate to the inverse problems described in Section 2.
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As discussed in [33], it follows that if the mapping q → Oy(ti; q) is continuous,
then the convergence ρ(Pk, P ) → 0 in the Prohorov metric is equivalent to

E [Oy(ti; q)|Pk] → E [Oy(ti; q)|P ],

and hence the map

P → J(P ) =
Nt∑
i=1

|E [Oy(ti; q)|P ]− ẑi|2

is continuous in the ρ topology. Moreover, if the space Q is compact we have
that (P(Q), ρ) is a compact metric space, which along with the continuity of
the map P → J(P ) guarantees the existence of a minimizer over P(Q) for the
estimation problem associated with

min
P∈P(Q)

J(P, ẑ) =
Nt∑
i=1

|E [Oy(ti; q)|P ]− ẑi|2 . (9)

In addition to establishing the existence of a solution for the inverse prob-
lem (9), Banks and Bihari [33] developed results related to method stability for
this problem. Using finite dimensional approximation techniques, they show
in Theorem 4.1 that the solutions for (9) depend continuously on the data
(see [33] for a complete discussion). Moreover, any sequence of minimizers of
the finite dimensional problems for (7) converge in the Prohorov metric to
a minimizer for the original infinite dimensional problem (9). This theorem
makes use of the result they prove in Theorem 3.1 [33] that the set P0(Q) as
in (6) is dense the space P(Q) with respect to the Prohorov metric ρ.

In demonstrating the convergence of solutions for the family of finite dimen-
sional problems (7), the result established in Theorem 4.1 of [33] also provides
a computational framework for solving the general parameter estimation prob-
lem (9) without specifying prior probability distributions. Using discrete Dirac
delta measures, for sufficiently large M we may approximate

∫
Q

Oy(t; q)dP (q) ≈
∫
Q

M∑
j=0

Oy(t; q)pjδqM
j
(q)dq =

M∑
j=0

Oy(t; qMj )pj,

which then allows us to approximate the infinite dimensional inverse prob-
lem (9) by the finite dimensional approximation (7).

4 Application to a toxicokinetic model for TCE

In this section we apply the methods developed in Section 2 to a toxicoki-
netic model for trichloroethylene. We utilize the probability-based estimation
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technique involving (3) and we compare the results to those obtained with a
traditional deterministic method for (2).

Here we develop and test several estimation problems for the TCE model with
simulated data that qualitatively and quantitatively match the experimental
data in [38], and we demonstrate which strategies and observations are most
successful at capturing and predicting the dynamics of TCE in adipose tis-
sue. This in-depth study of the parameter estimation process with simulated
data is important for testing and understanding the capability of these esti-
mation techniques, and is a necessary first step before use of the methods
with experimental data containing additional and generally unknown sources
of variability.

The results that we present here demonstrate clear advantages for the probability-
based method when the experimental observations are subject to inter-individual
variability. In addition, our studies of the parameter estimation problem for
the TCE model illustrate ways in which both the quantity and the quality
of experimental data have a major impact on the effectiveness of parameter
estimation techniques.

4.1 Overview of the TCE model

Here we provide an overview of the PBPK-hybrid model for TCE as developed
in [16,36]. This model utilizes standard physiologically based pharmacokinetic
compartmental equations for various non-fat tissues. The fat tissue compart-
ment is described with a spatially varying dispersion model, and is designed
specifically to capture the intra-individual variability that results from the
heterogeneous physiology of fat.

The most commonly used compartmental model in PBPK modeling is the
perfusion-limited, or flow-limited compartment. This model is based on sim-
ple mass balance principles and assumptions of rapid equilibrium and spatial
uniformity. Moreover, it is assumed that the blood flow rate to the tissue
is much slower than the rate of transport of the compound across cell mem-
branes. The resulting equation for the tissue concentration C of the compound
is given by

V
dC(t)

dt
= Q,bl(Cin(t)− Cout(t)),

where V is the volume of the tissue, Qbl is the volumetric blood flow rate
to the tissue, and Cin and Cout are the concentrations of compound entering
and leaving the tissue respectively (see [39]). Under standard assumptions, the
concentration Cout is equal to the concentration C of compound in the tissue
divided by the blood:tissue partition coefficient [39].
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Fig. 1. Schematic of PBPK model for inhaled TCE in Long-Evans rats.

For many tissues and compounds of interest the perfusion-limited compart-
mental model is adequate to describe the dynamics of such compounds inside
the tissues. In the case of highly lipophilic substances such as TCE, however,
the standard models may not accurately capture the transport of these chem-
icals in the adipose tissue. As discussed in Section 1, the highly heterogeneous
physiology of fat tissue appears to have a major influence on the behavior
of TCE in fat. Using a PBPK model for TCE in Long-Evans rats with a
perfusion-limited fat compartment [38] (see Figure 1 for a model schematic),
model simulations suggested that the standard model indeed does not capture
the concentration profile of TCE in adipose tissue as seen in experimental
data [16].

To account for the spatial variation in TCE fat concentrations as suggested
by the physiology of adipose tissue, an axial dispersion model was developed
to replace the perfusion-limited fat tissue compartment. This model is based
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Fig. 2. Geometric representation of an adipocyte-capillary unit in adipose tissue.
The adipocyte region (A) is represented by a sphere and is immersed in the inter-
stitial fluid (I). The capillary or blood region (B) is a cylindrical tube that wraps
around the adipocyte. Coordinates are in spherical coordinates (r, θ, φ).

directly on the structure of fat tissue, which consists primarily of spherical,
lipid-containing cells called adipocytes. Each adipocyte is in contact with one
or more capillaries [40] and is immersed in interstitial fluid. Figure 2 depicts
the geometric representation of an adipocyte-capillary unit as used in the dis-
persion model. There are three subcompartments in the model that represent
the adipocyte region (A), the capillary or blood region (B) and the interstitial
fluid (I).

The model equations are based on an axial dispersion model developed by
Roberts and Rowland [41] for the liver. A key feature of their model is its
aggregate structure, using a single cellular unit with the dispersion term to
represent the intra-individual variability that occurs across the millions of
cells in the tissue. As detailed in [16], we have adapted their model to describe
the geometry of adipose tissue and the transport of TCE within the fat. The
resulting system of partial differential equations is given by

VB
∂CB

∂t
=

VB

r2 sinφ

∂

∂φ

[
sinφ

(DB

r2

∂CB

∂φ
− vCB

)]

+λIµBI(fICI(θ0)− fBCB)

+λAµBA(fACA(θ0)− fBCB) (10)
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−DB

r2

∂CB

∂φ
(t, φ) + vCB(t, φ)

∣∣∣∣∣
φ=ε1

=
Qc

1000AB

Ca(t) (11)

−DB

r2

∂CB

∂φ
(t, φ) + vCB(t, φ)

∣∣∣∣∣
φ=π−ε2

=
Qc

1000AB

Cv(t) (12)

VI
∂CI

∂t
=

VIDI

r2
1

[
1

sin2 φ

∂2CI

∂θ2
+

1

sinφ

∂

∂φ

(
sinφ

∂CI

∂φ

)]

+ δθ0(θ)χB(φ)λIµBI(fBCB − fICI)

+µIA(fACA − fICI) (13)

CI(t, θ, φ)=CI(t, θ + 2π, φ) (14)

∂CI

∂θ
(t, θ, φ)=

∂CI

∂θ
(t, θ + 2π, φ) (15)

CI(t, θ, 0)<∞ (16)

CI(t, θ, π)<∞ (17)

VA
∂CA

∂t
=

VADA

r2
0

[
1

sin2 φ

∂2CA

∂θ2
+

1

sinφ

∂

∂φ

(
sinφ

∂CA

∂φ

)]

+ δθ0(θ)χB(φ)λAµBA(fBCB − fACA)

+µIA(fICI − fACA) (18)

CA(t, θ, φ)=CA(t, θ + 2π, φ) (19)

∂CA

∂θ
(t, θ, φ)=

∂CA

∂θ
(t, θ + 2π, φ) (20)

CA(t, θ, 0)<∞ (21)

CA(t, θ, π)<∞. (22)

The capillary equation (10) describes the transport of TCE in the capillary
region of the adipose tissue and utilizes the dispersion term

VB

r2 sinφ

∂

∂φ

[
sinφ

DB

r2

∂CB

∂φ

]

with dispersion coefficient DB. This term accounts for the variability in phys-
iological properties that occurs across the population of fat cells, with a large
dispersion coefficient indicating a high degree of variability. Mathematically,
the dispersion term is equivalent to a standard diffusion term, although the
dispersion term is used specifically to approximate the observed physiologi-
cal phenomena of varying path lengths, flow velocities and compound transit
times that occur within a tissue.

The boundary conditions (11) and (12) connect the adipose capillary region
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to the systemic arterial and venous blood compartments using flux balance.
Transport of TCE between the capillary region and the other two adipose
subcompartments (interstitial and adipocyte) is modeled in the PDE (10).
The variables CB(t), CI(t) and CA(t) denote concentrations of TCE in the
capillary, interstitial and adipocyte regions respectively, while Ca(t) and Cv(t)
represent the systemic arterial and venous blood concentrations of TCE.

The interstitial region is modeled with the two-dimensional PDE (13) and
boundary conditions (14) – (17). The adipocyte region equations (18) – (22)
are similar in structure to the interstitial equations, and describe the diffusion
of TCE around the surface of the adipocyte as well as the transport of TCE
between the three adipose subcompartments. The boundary conditions are
standard periodic and finiteness boundary conditions that are commonly used
for the diffusion equation on a spherical domain. A detailed derivation and
description of the dispersion model is given in [16,36].

Adipose model parameters include the dispersion coefficient DB (m2/hour);
diffusion coefficientsDI andDA (m2/hour); the fractions fB, fI , fA of unbound
TCE in each adipose region; cell membrane permeability coefficients µBA, µIA,
µBI (liters/hour); blood flow parameters v (m/hour) and F ; and inter-region
transport parameters λI and λA.

The adipose model equations (10) – (22) are coupled with standard com-
partmental equations for the lung, arterial blood, venous blood, liver, brain,
kidney, muscle and remaining non-fat tissue to obtain a whole-body PBPK-
hybrid model. Uptake of TCE is via inhalation into the lungs, and metabolism
is modeled with a Michaelis-Menten term in the liver. The resulting equations
are given by

Vv
dCv

dt
=QmCm/Pm +QtCt/Pt +QfCB(·, π − ε2) +QbrCbr/Pbr

+QlCl/Pl +QkCk/Pk −QcCv (23)

Ca=
QcCv +QpCc

Qc +
Qp

Pb

(24)

Vm
dCm

dt
=Qm(Ca − Cm/Pm) (25)

Vt
dCt

dt
=Qt(Ca − Ct/Pt) (26)

Vbr
dCbr

dt
=Qbr(Ca − Cbr/Pbr) (27)

Vl
dCl

dt
=Ql(Ca − Cl/Pl)− vmaxCl/Pl

kM + Cl/Pl

(28)

Vk
dCk

dt
=Qk(Ca − Ck/Pk), (29)
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where Cv(t), Cbr(t), Ck(t), Cm(t), Cl(t) and Ct(t) denote TCE concentrations
in the venous blood, brain, kidney, muscle, liver and remaining tissue com-
partments, respectively. The chamber air concentration Cc(t) is specified as
part of the experiment and is used as a forcing function in the arterial blood
equation (24). For the results we present in this paper, we set the chamber air
concentration to 2000 parts per million TCE for one hour, followed by zero
ppm TCE until the final time tf (in hours).

Model parameters include tissue volumes V (in liters), volumetric blood flow
rates to the tissues Q (liters/hour), and blood:tissue partition coefficients P ,
each labeled with a subscript corresponding to the appropriate tissue. The car-
diac output and ventilation rates (in liters/hour) are denoted by Qc and Qb

respectively, and the blood:air partition coefficient is denoted as Pb. The stan-
dard Michaelis-Menten metabolic parameters are denoted by vmax (mg/hour)
and kM (mg/liter). See [16,36] for complete discussion of the model equations
and parameters.

Theoretical results relating to well-posedness of the whole-body PBPK-hybrid
model are presented in [42]. In particular, we have shown the existence of a
unique weak solution for a general class of nonlinear parabolic equations that
includes the TCE model as a special case. Moreover, we established the well-
posedness of the deterministic estimation problem for the TCE model, and
in [36] we have addressed the well-posedness of probability-based parameter
estimation methods applied to the TCE model. Numerical methods and sim-
ulations for this model with deterministic parameters are given in [17], and
results for the standard PBPK models are compared to those for the PBPK-
hybrid model.

4.2 Deterministic parameter estimation methods for the TCE model

In this section we present results for the standard deterministic parameter
estimation problem

min
q∈Q

J(q, z) =
Nt∑
i=1

|Oy(ti; q)− zi|2 (30)

applied to the TCE model, where

y(t) = [CB(t), CI(t), CA(t), Cv(t), Cbr(t), Ck(t), Cm(t), Ct(t), Cl(t)]
T,

q denotes the vector of unknown parameters in the admissible parameter space
Q, the observations are denoted by zi, i = 1, . . . , Nt, and O is the observation
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operator. Here the variable y(t) is subject to

∂

∂t
y(t, ·) = f(t, y(t, ·); q),

which we use as abbreviated notation for the TCE PBPK-hybrid model (10) –
(29).

4.2.1 Simulated observations

The observations zi, i = 1, . . . , Nt and the observation operator O are defined
so that they correspond to the types of experimental observations used in
the experiments conducted by Evans et al. [38]. The data that they collected
include measurements of TCE concentrations in homogenized samples of fat
tissue. Therefore we define the observation operator

Oy(ti; q)= C̄A(ti; q) (31)

where C̄A(ti; q) is the mean concentration of TCE over the adipocyte region
(see [17] for a precise definition and finite-dimensional approximation). Simi-
larly, we define the simulated observations

zi= C̄A(ti; q
∗) (32)

for i = 1, . . . , Nt and for some q∗ ∈ Q.

Note that the observations in (32) are defined to simulate measurements from a
single individual. The experimental data [38], however, include measurements
of TCE concentrations in several different rats. To approximate this inter-
individual variability within observations, we generate two additional types
of simulated data. The first type of data (Type I) represents the case where
measurements are collected from several individuals over time, so that each in-
dividual is measured at each time point. Note that this type of inter-individual
data includes trajectories over time for each individual in the group.

The second type of data (Type II) represents the case where measurements
are collected from multiple individuals so that each individual is utilized only
once. That is, at each time point there is a separate group of individuals
that is measured. This is the type of data that emerges from experimental
measurements of tissue concentrations when the animal must be sacrificed
and the entire tissue is removed for analysis. The experimental data collected
by Evans et al. [38] are of this type.

For each of these types of data, we generate simulated observations by assum-
ing that the model parameters vary across the population so that the param-
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eter vector q has a probability distribution function P ∈ P(Q). We assume
there are a total of Ns individuals sampled at each time point i = 1, . . . , Nt.
Thus for Type I data there is a total of Ns individuals, while for Type II data
there is a total of NsNt individuals.

For Type I data we define the observations

ẑIi =
1

Ns

Ns∑
j=1

C̄A(ti; q
∗
j ) (33)

for i = 1, . . . , Nt, where q∗j is sampled from a given P ∗ ∈ P(Q) for j =
1, . . . , Ns. These observations represent the expected value of measurements
taken over the Ns individuals in the group, and are realizations of the obser-
vations used in (3) and described in (4).

The Type II observations are given by

ẑIIi =
1

Ns

Ns∑
j=1

C̄A(ti; q
∗
ij) (34)

for i = 1, . . . , Nt, where q∗ij is sampled from P ∗ for j = 1, . . . , Ns and i =
1, . . . , Nt.

4.2.2 Parameter estimation results

We have conducted a thorough study in [36] of the deterministic parameter
estimation problem (30) for the adipose model parameters

q = [DB, DI , DA, µIA, µBA, µBI , r1, AB]. (35)

We considered estimation problems for single parameters as well as pairs,
triples, and the entire 8-vector q. The data used in the estimation problems
included simulated data approximating a single individual (32) and Type II
data (34). The objective function given in (30) was minimized in Matlab with
fminsearch, which uses a Nelder-Mead direct search algorithm. A complete
description of the estimation problems and results is presented in [36]. As the
probabilistic estimation methods are the focus of this paper, here we merely
summarize the results from the deterministic estimation method for compar-
ative purposes.

Using observations (32) simulating a single individual, we obtained optimized
parameters that were significantly close to the data-generating parameters
q∗, with more accurate estimates for pairs and triples of parameters than for

17



the entire eight-dimensional vector q. We studied the effect of varying the
time points ti, i = 1, . . . , Nt at which the observations are “collected” and
the number of samples Ns taken at each time point, determining that the
accuracy of our parameter estimates increased as the number of time points
Nt increased, as the range of time included in the observations increased, and
as the number of samples Ns at each time point increased.

When we introduced inter-individual variability into the observations by us-
ing Type II data (34), the deterministic estimation method yielded parameters
that were less accurate as the degree of population variability increased. These
results, which are presented in full detail in [36], suggested that the determin-
istic parameter estimation technique may not be the best method to use when
the observations are subject to significant inter-individual variability.

To further illustrate this point, here we present results for the determinis-
tic parameter estimation problem with observations that simulate parameters
with a bimodal probability distribution. In this case we utilize the estimation
problem (30) with q = DB, the dispersion coefficient. This parameter is a mea-
sure of the degree of variability that occurs within an individual’s fat tissue,
and it is plausible to assume that DB may be bimodally distributed over a
population with male and female subpopulations.

The observations used in these estimation problems were generated with a
bimodal distribution P ∗ = Pbi composed of two normal distributions with
means µ1 = 1, µ2 = 3, standard deviations σ1 = 0.1667, σ2 = 0.2 and mixing
parameter 0.5 (i.e., equal weighting between the two gaussians). See Figure 3
for a graph of the probability density functions that are combined to create the
bimodal density function. This probability density is used to generate obser-
vations of Type I (33) and Type II (34); single individual observations (32) are
generated using q∗ = 1. We used three different time vectors ti, i = 1, . . . , Nt

for our simulated observations to study the effect of the quantity of data on the
quality of the estimation results. The vectors we used included the following:

*t1 = [0, 5, 20, 40, 60, 120]

*t2 = [0, 5, 20, 40, 60, 120, 180, 240, 300]

*t3 = [0, 5, 20, 40, 60, 90, 105, 110, 115, 120, 125, 130,

135, 150, 180, 210, 240, 270, 275, 285, 290, 295, 300]

(in minutes) with tf = 2 hours, Nt = 6 for *t1, tf = 5 hours, Nt = 9 for *t2, and
tf = 5 hours, Nt = 23 for *t3. Simulated observations (32) – (34) were then
generated using these time vectors. The initial iterate q0 used in the optimizer
was sampled from a uniform distribution on [0.75, 1.25] and has a value of
q0 = 0.9577.
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Fig. 3. Normal probability density functions with means µ1 = 1, µ2 = 3 and stan-
dard deviations σ1 = 0.1667, σ2 = 0.2.

�t1 �t2 �t3

qopt 1.0000 1.0000 1.0000

J(q0, z) 0.0966 0.5689 2.2229

J(qopt, z) 2.5014e−9 5.7127e−9 1.4811e−8

Table 1
Optimized solutions qopt for the deterministic estimation problem (30) with initial
iterate q0 = 0.9577 and data-generating parameter q∗ = 1. The observations z were
generated to simulate a single individual as in (32) at the time points �t1, �t2 and �t3.

For observations simulating a single individual, the optimized solutions were
equal to qopt = 1.0000 for each choice of time vectors *t1, *t2, *t3. See Table 1 for
a summary of these parameter estimation results.

We also carried out the deterministic estimation problem using Type I data as
in (33) with the time vectors *t1, *t2 and *t3, where q

∗
j is sampled from the bimodal

distribution function P ∗ = Pbi for j = 1, . . . , Ns. The values of the number Ns

of samples taken at each time point we considered included Ns = 5, 10, 20 and
50. Results are presented in Table 2, and plots of the resulting concentration
profiles are given in Figures 4 – 7. In this and all following figures, the small
solid dots are the individual data points and the larger open circles are the
averaged values of the data at each point in time. Note that the data used in
the optimization problem are the larger open circles.

As seen in the figures, as the value ofNs increases, the predicted TCE adipocyte
concentrations for qopt more closely approximate the response from the data-
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�t1 �t2 �t3

Ns 5 10 20 50 5 10 20 50 5 10 20 50

qopt 2.82 2.38 1.79 1.60 2.82 2.32 1.71 1.53 2.82 2.33 1.72 1.54

J(q0, z) 34.5 27.0 15.1 10.9 145 114 62.9 45.5 593 464 257 186

J(qopt, z) 8e−6 4e−3 0.02 0.02 2e−4 0.02 0.10 0.12 8e−4 0.08 0.45 0.53

Table 2
Optimized solutions qopt for the deterministic estimation problem (30) with initial
iterate q0 = 0.9577 and data-generating parameter q∗ = 1. The observations z were
generated to simulate Type I data as in (33) at the time points �t1, �t2 and �t3 with
Ns = 5, 10, 20 and 50.

generating parameters q∗. For the case Ns = 5, note that the individual data
points all are clustered near the response for the parameter value DB = 3,
so that observations for this particular estimation problem do not behave
as bimodally distributed data. This is reflected in the optimized parameter
qopt = 2.82, which is significantly different from the results for other data
sets which contain points from both gaussians. Increasing the number of time
points at which the observations are collected does not improve the results for
this type of data (e.g., see Figure 7). These results indicate the importance of
ensuring a large enough sample size for the observations.

Similar results for Type II data are given in Table 3 and Figures 10 – 13.
Note that as Ns increases and as the number Nt of time points increases, the
deterministic method yields optimized parameters that generate reasonable
approximations for the dynamics of TCE as seen with the data-generating
parameters. It is clear from Tables 2 and 3, however, that the optimized pa-
rameters qopt do not provide any information about the population variance
or the distribution of parameter values. Indeed, most of the values of qopt lie
in the range from 1.3 to 1.8, which is in between the means of the two gaus-
sians that form the bimodal distribution P ∗ = Pbi. Moreover, as constants,
the optimized parameters cannot suggest the underlying bimodal nature of
the observations used in the optimization problem. Therefore it appears that
the deterministic approach may not be most appropriate except in situations
when the form of the parameter distribution function is already known and it
is necessary only to estimate the mean.

4.3 Probabilistic parameter estimation methods for the TCE model

In this section we apply the probability-based parameter estimation methods
presented in Section 2 to the TCE PBPK-hybrid model. These results are then
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�t1 �t2 �t3

Ns 5 10 20 50 5 10 20 50 5 10 20 50

qopt 1.34 1.44 1.33 1.28 1.51 1.49 1.52 1.46 1.35 1.42 1.50 1.50

J(q0, z) 5.50 7.26 5.23 4.11 46.5 42.7 46.6 39.7 128 148 174 174

J(qopt, z) 0.52 0.12 0.34 0.14 2.49 0.88 1.82 0.98 21.6 13.2 6.08 3.71

Table 3
Optimized solutions qopt for the deterministic estimation problem (30) with initial
iterate q0 = 0.9577 and data-generating parameter q∗ = 1. The observations z were
generated to simulate Type II data as in (34) at the time points �t1, �t2 and �t3 with
Ns = 5, 10, 20 and 50.

compared to the results for the deterministic estimation problem as given in
Section 4.2. Here we utilize the estimation problem with objective function

J(P, ẑ) =
Nt∑
i=1

|E [Oy(ti; q)|P ]− ẑi|2

and its finite-dimensional approximation

J(PM , ẑ) =
Nt∑
i=1

∣∣∣∣∣∣
M∑
j=0

Oy(ti; qj)pj − ẑi

∣∣∣∣∣∣
2

(36)

as discussed in Section 2, with observations ẑi, i = 1, . . . , Nt corresponding to
the expected value (4).

As in Section 4.2 with the deterministic problem, we estimate the dispersion
coefficient DB using observations from a single individual and from bimodally
distributed data of Types I and II. The admissible parameter spaceQ is defined
as the closed interval [0, 4], and we use the finite dimensional approximation
spaces QM ⊂ Q for M = 32, 64, 128 with

qj = 4j/M, j = 0, . . . ,M.

The constrained quadratic programming problem (36) was solved in Matlab
using quadprog to obtain the probabilities [p0, . . . , pM ] subject to the con-
straints pj ≥ 0 and

∑M
j=0 pj = 1. That is, we minimized

pTAp+ 2bTp+ c

subject to pj ≥ 0, j = 0, . . . ,M and
∑M

j=0 pj = 1, where
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Ajk =
Nt∑
i=1

Oy(ti; qj)Oy(ti; qk), j, k = 0, . . . ,M

bj =−
Nt∑
i=1

Oy(ti; qj)ẑi, j = 0, . . . ,M

c=
Nt∑
i=1

ẑ2
i

with observations ẑi from (32), (33) or (34), respectively, and time vectors
*t1, *t2 or *t3. As in Section 4.2.1, the probability distribution P ∗ we used to
generate the observations is the bimodal distribution Pbi with means µ1 = 1
and µ2 = 3, standard deviations σ1 = 0.1667 and σ2 = 0.3333 and mixing
parameter 0.5.

For the estimation problem with observations (32) simulating a single indi-
vidual, the solution vector popt obtained by the optimization routine is given
by

pjopt =



1 if qj = 1

0 otherwise

for j = 0, . . . ,M and M = 32, 64, 128. This solution corresponds exactly
to the data-generating parameter distribution with a single mass at DB = 1,
suggesting that the probability-based estimation method is equally accurate in
solving for parameters from a single individual as the deterministic estimation
method. That is, if the data correspond to a deterministic parameter system,
using the more general probability-based formulation will still provide correct
results by returning a Dirac measure.

Results for the probabilistic method using Type I data are also plotted in
Figures 4 – 9. Each of these figures illustrates the case with M = 32; the
results for M = 64 and M = 128 were qualitatively similar and are not
presented here. Simulated TCE adipocyte concentrations corresponding to the
optimized parameters qprob = Popt are depicted in Figures 4 – 7 in comparison
with the observations and the model response corresponding to the optimized
parameter qdet from the deterministic problem for the same observation set.
Graphs of the optimized probability distributions popt are given in Figures 8
and 9 for *t1 and increasing values of Ns.

Note in Figures 4, 5 and 6 that as the sample size Ns increases from 5 to
50, the predicted adipocyte concentrations for both qdet and qprob more closely
match the response corresponding to the data-generating parameter set. Sim-
ilarly, the optimized probability distributions appear to converge to the data-
generating distribution P ∗ = Pbi as Ns increases (see Figures 8 and 9). This
apparent convergence is in agreement with the established theoretical conver-
gence of the finite-dimensional parameter estimation solutions summarized in
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Section 3 and detailed in [33].

As discussed in Section 4.2, however, Figure 7 suggests that the accuracy of
the predicted model responses does not appear to improve for this type of
data as the number Nt of time points increases without a concurrent increase
in Ns. In this case, the additional time-course information contained in the
extra time points does not contribute to the richness of data since the same
group of individuals is sampled at every time point.

Unlike the optimized solutions from the deterministic problem, the solutions
from the probabilistic estimation method contain information about the dis-
tribution of the parameters across the population. In addition to providing
an estimate of the mean and variance, the probabilistic method also yields an
approximation of the probability distribution itself. It is important, however,
to ensure that a large enough sample size is used for the observations so that
the population is accurately represented in the data.

We present results for the probabilistic estimation problem with Type II data
in Figures 10 – 15. Predicted TCE adipocyte concentrations are given in Fig-
ures 10 – 13 for *t1 and *t3 and various values of Ns; probability distribution
functions for *t3 and varying Ns are presented in Figures 14 and 15.

As illustrated in Figures 10 and 11 for *t1 with Ns = 5 and 20 respectively,
the optimized solutions for the probabilistic method can yield highly inac-
curate predictions of TCE adipocyte concentrations while the deterministic
method produces an accurate match to the observations. Our studies with
the quadratic programming problem have indicated the existence of multiple
solutions that satisfy the constraints, with some of the solutions yielding inac-
curate predictions of adipocyte concentrations beyond the time period covered
in the data.

This difficulty does not arise for observations that utilize the larger time vector
*t3 (see Figures 12 and 13), where the predicted responses for both methods
are reasonably close to the observations for all four values of Ns. As seen in
Figures 14 and 15, however, the optimized probability distributions Popt do
not appear to converge with increasing values of Ns as clearly as in the case
with Type I data.

It is important to note that the quality of the Type II data is significantly dif-
ferent than the quality of Type I data since there is no time-course information
from any individual in the Type II data. Since each individual is measured
only once for the Type II data, the data points do not contain any trajectories
in time from an individual. In contrast, every individual is measured at each
time point for the Type I data, incorporating important time-course dynamics
into the observations.
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As demonstrated in our results, the deterministic method can reasonably pre-
dict the expected value of the model response over the population for Type
I and Type II data, but can provide no information about the population
distribution of the parameters. The probabilistic method, however, can suc-
cessfully yield the expected value, variance and overall shape of the population
distribution using Type I data. The probabilistic method has some difficulty
capturing this probability distribution with Type II data since valuable time-
course information is not contained in these data. Therefore it appears that
Type II data is, not surprisingly, less desirable for situations when the prob-
ability distribution of parameters must be estimated with no prior knowledge
of the shape of the distribution.

5 Concluding remarks

In this paper we have presented probability-based parameter estimation meth-
ods which incorporate and account for uncertainty and population variability
that arise in biological models. We outlined known theoretical results that
address issues of well-posedness for these estimation problems, and we applied
them to a toxicokinetic model for trichloroethylene using simulated obser-
vations that exhibited differing types of variability. These results were com-
pared to results obtained with a traditional deterministic parameter estimation
method.

As one might expect, our results indicate that the performance of the deter-
ministic and probabilistic estimation methods depends greatly on both the
quantity and quality of the data used in the estimation process. For data
that represent a single individual, each method produced parameter estimates
that accurately matched the data-generating parameter q∗. Not surprisingly,
in this case it appears that the deterministic method is sufficient for estimating
parameters using data from a single individual.

When any degree of variability is introduced into the experimental data, how-
ever, the deterministic estimation method is unable to capture any of this
variability in its parameter estimates. This method can in some cases rea-
sonably predict the expected value of the parameter over the population, but
can provide no information about the variance or the shape of the probability
distribution.

For observations of the expected value that contain important time-course
trajectories (as in the case of our Type I data), the probabilistic method is
able to successfully predict both the expected value and the overall probability
distribution of the parameter. This is accomplished by solving a standard
quadratic programming problem with no prior knowledge of the population

24



distribution. As seen in our results, it is important to use a sufficiently large
sample size so that the observations contain an adequate representation of the
population.

The results for the probability-based estimation problem are less conclusive
for Type II data, which are significantly different from the Type I data in
that they contain only one observation from each individual. This results in
data that include no individual time-course trajectories, which contributes to
difficulties in the optimization process. There appear to be many solutions to
the constrained quadratic programming problem for this type of data, and
some of these solutions produce inaccurate predictions of TCE adipocyte con-
centrations for time periods not included in the data themselves. Increasing
the number of time points Nt at which the observations are collected seems to
improve the results, but the convergence of the probability distributions is less
clear than for the case with Type I data. Our results therefore suggest that
it is less than desirable to utilize Type II data for estimating parameters that
have an unknown probability distribution. If at all possible, it is best to col-
lect experimental data that contain multiple measurements from individuals
over time, as this time-course information adds significant richness to the ex-
perimental data and significantly enhances our ability to estimate underlying
inter-individual variability.

A key feature of the probability-based methods presented here is their ability
to estimate population distributions for parameters without the use of priors.
In situations where there is little information about the shape of the probabil-
ity distribution(s), this can be a clear advantage over methods (e.g., Markov
Chain-Monte Carlo) that require the specification of priors. For example, a pa-
rameter with a bimodal parameter distribution may be mistakenly estimated
as a unimodal distribution if too much weight is placed on the assumption of a
unimodal prior. The probability-based estimation methods avoid this problem,
and the utilization of Dirac delta measures in the proper metric space guaran-
tees the theoretical convergence of the resulting estimates of the probability
distributions.

Current and future efforts related to this work include a study and comparison
of other probability-based parameter estimation techniques. In particular, we
plan to implement Markov Chain-Monte Carlo methods applied to a PBPK
model and compare the results we obtain with the probability-based estima-
tions outlined in this paper.
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Fig. 4. Simulated observations and predicted TCE adipocyte concentrations us-
ing optimized parameters qdet from the deterministic estimation problem (30) and
qprob = popt from the probabilistic problem (36) with M = 32. Observations used
in the estimation problems were Type I data with �t1 (tf = 2 hours, Nt = 6) and
with Ns = 5. In this and all similar figures that follow, the solid black dots are
individual observations and the black open circles, which are used in the estimation
problem, are the averaged values of the individual observations at each time point.
The solid line is the model response corresponding to the data-generating bimodal
distribution P ∗ = Pbi using (4) with P ∗. The dashed and dotted lines are the model
responses corresponding to qdet and qprob, respectively.

30



0 5 10 15
0

2

4

6

8

10

12

Time (hours)

E
xp

ec
te

d 
va

lu
e 

of
 m

ea
n 

T
C

E
 a

di
po

cy
te

 c
on

c.
 (

m
g/

lit
er

)

Bimodal, qM = 32, tf = 2, Nt = 6, Ns = 10 (Type I)

q*

q
prob

q
det

Ave. data
Individ. data

Fig. 5. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type I data with �t1 (tf = 2 hours, Nt = 6) and with Ns = 10.
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Fig. 6. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type I data with �t1 (tf = 2 hours, Nt = 6) and with Ns = 20
(top figure) and Ns = 50 (bottom figure).
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Fig. 7. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the esti-
mation problems were Type I data with Ns = 10 and with �t2 (top figure) and �t3
(bottom figure).
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Fig. 8. Probability distribution functions P as a function of the parameter q = DB

for the data-generating distribution P ∗ = Pbi and the optimized distribution Pprob

from the probabilistic estimation problem (36) with Type I data, M = 32, �t1 and
with Ns = 5 (top figure) and Ns = 10 (bottom figure).
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Fig. 9. Probability distribution functions P as a function of the parameter q = DB

for the data-generating distribution P ∗ = Pbi and the optimized distribution Pprob

from the probabilistic estimation problem (36) with Type I data, M = 32, �t1 and
with Ns = 20 (top figure) and Ns = 50 (bottom figure).
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Fig. 10. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type II data with �t1 (tf = 2 hours, Nt = 6) and with Ns = 5
(top figure) and Ns = 10 (bottom figure).
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Fig. 11. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type II data with �t1 (tf = 2 hours, Nt = 6) and with Ns = 20
(top figure) and Ns = 50 (bottom figure).
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Fig. 12. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type II data with �t3 (tf = 5 hours, Nt = 23) and with Ns = 5
(top figure) and Ns = 10 (bottom figure).
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Fig. 13. Simulated observations and predicted TCE adipocyte concentrations using
optimized parameters qdet from the deterministic estimation problem (30) and qprob
from the probabilistic problem (36) with M = 32. Observations used in the estima-
tion problems were Type II data with �t3 (tf = 5 hours, Nt = 23) and with Ns = 20
(top figure) and Ns = 50 (bottom figure).
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Fig. 14. Probability distribution functions P as a function of the parameter q = DB

for the data-generating distribution P ∗ = Pbi and the optimized distribution Pprob

from the probabilistic estimation problem (36) with Type II data, M = 32, �t3 and
with Ns = 5 (top figure) and Ns = 10 (bottom figure).
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Fig. 15. Probability distribution functions P as a function of the parameter q = DB

for the data-generating distribution P ∗ = Pbi and the optimized distribution Pprob

from the probabilistic estimation problem (36) with Type II data, M = 32, �t3 and
with Ns = 20 (top figure) and Ns = 50 (bottom figure).
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